Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We conducted a search for new ultracool companions to nearby white dwarfs using multiple methods, including the analysis of colors and examination of images in both the optical and the infrared. Through this process, we identified 51 previously unrecognized systems with candidate ultracool companions. 31 of these systems are resolved in at least one catalog, and all but six are confirmed as comoving companions via common proper motion and consistent parallax measurements (when available). We have followed up four comoving companions with near-infrared spectroscopy and confirm their ultracool nature. The remaining twenty candidates are unresolved, but show clear signs of infrared excess which is most likely due to the presence of a cold, low-mass companion or a dusty circumstellar disk. Three of these unresolved systems have existing optical spectra that clearly show the presence of a cool stellar companion to the white dwarf primary via spectral decomposition. These new discoveries, along with our age estimates for the primary white dwarfs, will serve as valuable benchmark systems for future characterization of ultracool dwarfs.more » « lessFree, publicly-accessible full text available January 29, 2026
- 
            Abstract We present the discovery of VHS J183135.58−551355.9 (hereafter VHS J1831−5513), an L/T transition dwarf identified as a result of its unusually red near-infrared colors (J−KS= 3.633 ± 0.277 mag;J−W2 = 6.249 ± 0.245 mag) from the VISTA Hemisphere Survey and CatWISE2020 surveys. We obtain low-resolution near-infrared spectroscopy of VHS J1831−5513 using the Magellan Folded port InfraRed Echellette spectrograph to confirm its extremely red nature and assess features sensitive to surface gravity (i.e., youth). Its near-infrared spectrum shows multiple CH4absorption features, indicating an exceptionally low effective temperature for its spectral type. Based on proper-motion measurements from CatWISE2020 and a photometric distance derived from itsKs-band magnitude, we find that VHS J1831−5513 is a likely (∼85% probability) kinematic member of theβPictoris moving group. Future radial velocity and trigonometric parallax measurements will clarify such membership. Follow-up mid-infrared or higher-resolution near-infrared spectroscopy of this object will allow for further investigation as to the cause(s) of its redness, such as youth, clouds, and viewing geometry.more » « less
- 
            Abstract We present three new brown dwarf spectral-binary candidates: CWISE J072708.09−360729.2, CWISE J103604.84−514424.4, and CWISE J134446.62−732053.9, discovered by citizen scientists through the Backyard Worlds: Planet 9 project. Follow-up near-infrared spectroscopy shows that each of these objects is poorly fit by a single near-infrared standard. We constructed binary templates and found significantly better fits, with component types of L7+T4 for CWISE J072708.09−360729.2, L7+T4 for CWISE J103604.84−514424.4, and L7+T7 for CWISE J134446.62−732053.9. However, further investigation of available spectroscopic indices for evidence of binarity and large amplitude variability suggests that CWISE J072708.09−360729.2 may instead be a strong variability candidate. Our analysis offers tentative evidence and characterization of these peculiar brown dwarf sources, emphasizing their value as promising targets for future high-resolution imaging or photometric variability studies.more » « less
- 
            Abstract We present the discovery of 118 new ultracool dwarf candidates, discovered using a new machine-learning tool, namedSMDET, applied to time-series images from the Wide-field Infrared Survey Explorer. We gathered photometric and astrometric data to estimate each candidate’s spectral type, distance, and tangential velocity. This sample has a photometrically estimated spectral class distribution of 28 M dwarfs, 64 L dwarfs, and 18 T dwarfs. We also identify a T-subdwarf candidate, two extreme T-subdwarf candidates, and two candidate young ultracool dwarfs. Five objects did not have enough photometric data for any estimations to be made. To validate our estimated spectral types, spectra were collected for two objects, yielding confirmed spectral types of T5 (estimated T5) and T3 (estimated T4). Demonstrating the effectiveness of machine-learning tools as a new large-scale discovery technique.more » « less
- 
            Abstract We present the discovery of 13 new widely separated T dwarf companions to M dwarf primaries, identified using Wide-field Infrared Survey Explorer/NEOWISE data by the CatWISE and Backyard Worlds: Planet 9 projects (hereafter BYW). This sample represents an ∼60% increase in the number of known M + T systems, and allows us to probe the most extreme products of binary/planetary system formation, a discovery space made available by the CatWISE2020 catalog and the BYW effort. Highlights among the sample are WISEP J075108.79-763449.6, a previously known T9 thought to be old due to its spectral energy distribution, which was found by Zhang et al. (2021b) to be part of a common proper motion pair with L34-26 A, a well-studied young M3 V star within 10 pc of the Sun; CWISE J054129.32-745021.5 B and 2MASS J05581644-4501559 B, two T8 dwarfs possibly associated with the very fast-rotating M4 V stars CWISE J054129.32745021.5 A and 2MASS J05581644-4501559 A; and UCAC3 52-1038 B, which is among the widest late-T companions to main-sequence stars, with a projected separation of ∼7100 au. The new benchmarks presented here are prime JWST targets, and can help us place strong constraints on the formation and evolution theory of substellar objects as well as on atmospheric models for these cold exoplanet analogs.more » « less
- 
            Abstract We report the identification of 89 new systems containing ultracool dwarf companions to main-sequence stars and white dwarfs, using the citizen science project Backyard Worlds: Planet 9 and cross-reference between Gaia and CatWISE2020. 32 of these companions and 33 host stars were followed up with spectroscopic observations, with companion spectral types ranging from M7–T9 and host spectral types ranging from G2–M9. These systems exhibit diverse characteristics, from young to old ages, blue to very red spectral morphologies, potential membership to known young moving groups, and evidence of spectral binarity in nine companions. 20 of the host stars in our sample show evidence for higher-order multiplicity, with an additional 11 host stars being resolved binaries themselves. We compare this sample’s characteristics with those of the known stellar binary and exoplanet populations, and find our sample begins to fill in the gap between directly imaged exoplanets and stellar binaries on mass ratio–binding energy plots. With this study, we increase the population of ultracool dwarf companions to FGK stars by ∼42%, and more than triple the known population of ultracool dwarf companions with separations larger than 1000 au, providing excellent targets for future atmospheric retrievals.more » « less
- 
            Abstract We present the analysis of two unusually red L dwarfs, CWISE J075554.14−325956.3 (W0755−3259) and CWISE J165909.91−351108.5 (W1659−3511), confirmed by their newly obtained near-infrared spectra collected with the TripleSpec4 spectrograph on the Southern Astrophysical Research Telescope. We classify W0755−3259 as an L7 very low-gravity dwarf, exhibiting extreme redness with a characteristic peakedH-band and spectral indices typical of low-gravity late-type L dwarfs. We classify W1659-3511 as a red L7 field-gravity dwarf, with a more roundedH-band peak and spectral indices that support a normal gravity designation. W1659−3511 is noticeably fainter than W0755−3259, and the roundedH-band of W1659−3511 may be evidence of CH4absorption.more » « less
- 
            Abstract We present six epochs of optical spectropolarimetry of the Type II supernova (SN) 2023ixf ranging from ∼2 to 15 days after the explosion. Polarimetry was obtained with the Kast double spectrograph on the Shane 3 m telescope at Lick Observatory, representing the earliest such observations ever captured for an SN. We observe a high continuum polarizationpcont≈ 1% on days +1.4 and +2.5 before dropping to 0.5% on day +3.5, persisting at that level up to day +14.5. Remarkably, this change coincides temporally with the disappearance of highly ionized “flash” features. The decrease of the continuum polarization is accompanied by a ∼70° rotation of the polarization position angle (PA) as seen across the continuum. The early evolution of the polarization may indicate different geometric configurations of the electron-scattering atmosphere as seen before and after the disappearance of the emission lines associated with highly ionized species (e.g., Heii, Civ, and Niii), which are likely produced by elevated mass loss shortly prior to the SN explosion. We interpret the rapid change of polarization and PA from days +2.5 to +4.5 as the time when the SN ejecta emerge from the dense asymmetric circumstellar material (CSM). The temporal evolution of the continuum polarization and the PA is consistent with an aspherical SN explosion that exhibits a distinct geometry compared to the CSM. The rapid follow-up spectropolarimetry of SN 2023ixf during the shock ionization phase reveals an exceptionally asymmetric mass-loss process leading up to the explosion.more » « less
- 
            Abstract Y dwarfs, the coolest known spectral class of brown dwarfs, overlap in mass and temperature with giant exoplanets, providing unique laboratories for studying low-temperature atmospheres. However, only a fraction of Y dwarf candidates have been spectroscopically confirmed. We present Keck/NIRES near-infrared spectroscopy of the nearby (d≈ 6–8 pc) brown dwarf CWISE J105512.11+544328.3. Although its near-infrared spectrum aligns best with the Y0 standard in theJband, no standard matches well across the fullYJHKwavelength range. The CWISE J105512.11+544328.3 NH3-H= 0.427 ± 0.0012 and CH4-J= 0.0385 ± 0.0007 absorption indices and absolute Spitzer [4.5] magnitude of 15.18 ± 0.22 are also indicative of an early-Y dwarf rather than a late-T dwarf. CWISE J105512.11+544328.3 additionally exhibits the bluest Spitzer [3.6]−[4.5] color among all spectroscopically confirmed Y dwarfs. Despite this anomalously blue Spitzer color given its low luminosity, CWISE J105512.11+544328.3 does not show other clear kinematic or spectral indications of low metallicity. Atmospheric model comparisons yield a log(g) ≤ 4.5 andTeff≈ 500 ± 150 K for this source. We classify CWISE J105512.11+544328.3 as a Y0 (pec) dwarf, adding to the remarkable diversity of the Y-type population. JWST spectroscopy would be crucial to understanding the origin of this Y dwarf’s unusual preference for low-gravity models and blue 3–5μm color.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
